EN/CN
☀️
System Online.
×
Initializing...

🚀 E-Link(256)

MINE Lab Verified Website LinkedIn License

ELINK-256 Assembly Demo GIF

📖 Overview

E-Link (Elastomer Interconnection-based connector) is an open-source, high-density pedestal connector system. It offers a robust, scalable interface for thin-film neural probes, specifically optimized for long-term use in freely moving animals.


PEDAL-256 Exploded View

Mating Dynamics (left) and Structural Breakdown (right) of the E-Link(256)


[!NOTE] Key Innovation: The system integrates two high-density PCBs, an anisotropic elastomeric contact interface, and a lightweight pedestal housing into a fully integrated, headstage-ready solution.


📊 Quick Specifications

Specification E-Link(256)_V1.0
Channel Count 128 or 256 Channels (Single/Dual SPI Port support)
Total Mass 6.6 g (with housing)
2.8 g (without housing)
Interconnect Type Solderless Anisotropic Elastomer
Compatible Acquisition System Intan Recording Controller (512ch/1024ch)
Open-Ephys DAQ box
NeuroNexus Smartbox
OmniPlex DAQ box
Housing Material 3D-Printed PEEK / Surgical Grade Resin

✨ Key Features

  • ⚡ 256-Channel High-Density Interface Compact pedestal footprint supporting high-density acquisition without increasing surgical overhead.
  • 🔌 Solderless Elastomeric Interconnect Uses anisotropic conductive elastomer for repeatable, alignment-tolerant electrical contact.
  • 🐭 Optimized for In-Vivo Research Minimal Implant Footprint Core components weigh only 2.8g (with housing removed), reducing head-heavy behavior and improving animal welfare during long-term recording sessions.
  • 🛠️ Modular & Scalable Separable housing, PCBs, and protective cap for rapid iteration and troubleshooting.
  • 🧪 Surgical-Grade Design Textured sidewalls for superior adhesion with dental cement or UV-curable resin.
ELINK-256 Animation GIF

🧩 System Components

Component Description
Pedestal Housing 3D-printed/machined pedestal providing structural support and cranial fixation
Customized 256Ch Headstage Form-factor optimized recording interface for high-density 128/256-channel signal acquisition
Foam Washer Provides compliant compression to ensure uniform electrical contact across the elastomeric interface
Adapter PCB High-density 4-layer PCB for routing signals from thin-film probes to headstage ball array pattern
Surgical Cap Protective enclosure preserving electrical and mechanical integrity throughout chronic experiments

🛠 Bill of Materials (BOM) of the headstage

Component Description Qty Package Notes
Amplifier IC Intan RHD2164 4 BGA Critical: Ensure correct orientation
SPI Connector Omnetics A7621 2 - 12-wire cable harness (32 AWG)
Resistors Standard SMD 7 0402 LVDS Configuration
Capacitors Standard SMD 8 0603 LVDS Configuration
Power LED Green LED 1 0402 Power Indicator
Solder Balls 0.4 mm Lead-free ~300 - For BGA rework/assembly

👥 Developers & Lab

This project is developed by the MINE Lab at Dartmouth College. MINE Lab

  • Tianyu Bai (Lead Designer) Website
  • Gen Li, Ph.D.
  • Hui Fang, Ph.D.

📄 Publication

This work is currently under review at the IEEE Journal on Flexible Electronics (JFLEX).

The hardware designs and visual assets in this repository correspond directly to the system described in the submitted manuscript. To maintain the integrity of the peer-review process:

  • Full Citation: A permanent link to the final paper will be updated here immediately upon formal acceptance.
  • Preprint/Full Paper: Coming Soon.

  • We welcome feedback and collaboration from the neuroengineering community!

  • Inquiries: For access to the technical design files or questions, please contact:

📑 Citation & DOI

If you utilize these designs, code, or assets in your research, please cite this repository using the persistent DOI provided by Zenodo:

Current Reference:

T. Bai, et al., “E-Link GitHub Repository,” v1.0, MINE Lab, Dartmouth College, 2026. DOI


🔗 Repository & Downloads

This project is fully open-source. Upon acceptance of the associated paper, the complete dataset comprising PCB fabrication files (Gerber/NC Drill), BOM, and Mechanical CAD will be accessible via the link below.

👇 Bookmark the repository for future downloads:

View on GitHub Status Locked

🤝 Acknowledgments

The developers gratefully acknowledge support from the NIH (R01MH139342) and the Dartmouth PhD Innovation Fellowship.

Special thanks to the members of the MINE Lab and the Thayer School of Engineering for their technical support and feedback throughout the development of the E-Link (256) system.


📜 License

Copyright © 2026 Tianyu Bai Website

This project is open-source and available under the MIT License. Click the badge below for full license details.

License


👇 🇨🇳 Chinese Version / 中文版 👇



🚀 E-Link(易连256)

Typing SVG
方辉组 Verified Website LinkedIn License

ELINK-256 组装演示 GIF

📖 概览

E-Link易连,一种基于弹性导电体互连的用于高密度神经记录的连接器。它提供了一个紧凑的接口大小,用于将薄膜探针连接到自由活动动物的头部放大器(Headstage)。


PEDAL-256 分解图

E-Link(256) 的插拔动态(左)和结构分解(右)


[!NOTE] 核心创新: 该系统将两个高密度 PCB、一个各向异性弹性体接触界面和一个轻量级基座外壳集成到一个完全一体化的、即插即用的头部采集方案中。


📊 快速规格参数

规格项目 E-Link(256)_V1.0
通道数 128 或 256 通道 (支持单/双 SPI 端口)
总质量 6.6 g (含外壳)
2.8 g (不含外壳)
互连类型 免焊各向异性弹性体
兼容采集系统 Intan Recording Controller (512ch/1024ch)
Open-Ephys DAQ box
NeuroNexus Smartbox
OmniPlex DAQ box
外壳材料 3D 打印 PEEK / 手术级树脂

✨ 关键特性

  • ⚡ 256 通道高密度接口 紧凑的基座占地面积,支持高密度采集,且不增加手术负担。
  • 🔌 免焊弹性体互连 使用各向异性导电弹性体,实现可重复、允许一定对准误差的电气接触。
  • 🐭 专为体内研究优化 最小化植入占地面积。核心组件重量仅为 2.8g(移除外壳后),减少了头重脚轻的现象,并在长期记录过程中改善动物福利。
  • 🛠️ 模块化与可扩展 外壳、PCB 和保护盖均可分离,便于快速迭代和故障排查。
  • 🧪 手术级设计 纹理化侧壁设计,增强了与牙科水泥或紫外光固化树脂的附着力。
ELINK-256 动画演示 GIF

🧩 系统组件

组件 描述
基座外壳 (Pedestal Housing) 3D 打印/机械加工的基座,提供结构支撑和颅骨固定
定制化 256Ch 头部放大器 针对高密度 128/256 通道信号采集优化的形状因数记录接口
泡沫垫圈 (Foam Washer) 提供柔性压缩,确保弹性体接口上的电气接触均匀
转接板 PCB (Adapter PCB) 高密度 4 层 PCB,用于将信号从薄膜探针路由到头部放大器的球栅阵列图案
手术保护盖 (Surgical Cap) 保护性外壳,在长期慢性实验中保持电气和机械完整性

🛠 头部放大器物料清单 (BOM)

组件 描述 数量 封装 备注
放大器 IC Intan RHD2164 4 BGA 关键: 确保方向正确
SPI 连接器 Omnetics A7621 2 - 12 线线束 (32 AWG)
电阻 标准 SMD 7 0402 LVDS 配置
电容 标准 SMD 8 0603 LVDS 配置
电源 LED 绿色 LED 1 0402 电源指示灯
锡球 (Solder Balls) 0.4 mm 无铅 ~300 - 用于 BGA 返修/组装

👥 开发者与实验室

本项目由达特茅斯学院的 MINE Lab 主导开发。MINE Lab

  • 白天宇 (设计,开发) Website
  • 李根博士
  • 方辉教授

📄 出版物

这项工作目前正在 IEEE Journal on Flexible Electronics (JFLEX) 审稿中。

本仓库中的硬件设计和视觉资产直接对应于投稿中描述的系统。为了维护同行评审过程的完整性:

  • 完整引用:正式录用后,最终论文的永久链接将立即在此处更新。
  • 预印本/全文即将推出。

  • 我们欢迎神经工程科研社区的反馈与合作!

  • 咨询:如需获取技术设计文件或有任何疑问,请邮件联系:

📑 引用与 DOI

如果您在研究中使用了这些设计、代码或资产,请使用 Zenodo 提供的永久 DOI 引用本仓库:

当前参考:

T. Bai, et al., “E-Link GitHub Repository,” v1.0, MINE Lab, Dartmouth College, 2026. DOI


🔗 仓库与下载

本项目完全开源。相关论文录用后,包含 PCB 制造文件 (Gerber/NC Drill)BOM机械 CAD 的完整数据集将通过以下链接提供访问。

👇 收藏本仓库以便未来下载:

View on GitHub Status Locked

🤝 致谢

开发者衷心感谢 NIH (R01MH139342)达特茅斯博士创新奖学金 (Dartmouth PhD Innovation Fellowship) 的支持。

特别感谢 MINE LabThayer 工程学院 的成员在 E-Link (256) 系统开发过程中提供的技术支持和反馈。


📜 许可协议

版权所有 © 2026 Tianyu Bai Website

本项目为开源硬件,在以下许可下可用。点击下方徽章查看完整许可详情。

  • 硬件源文件 (KiCad/Gerbers/STL 文件):在 MIT 许可 下授权。
  • 文档、原理图 (PDF) 和图像:在 CC BY 4.0 国际许可 下授权。
License